YGS-LYS, Konu Anlatımı

Kenarortay

  • ÜÇGENDE KENARORTAY BAĞINTILARI

1. Ağırlık Merkezi

Üçgenlerde kenarortaylar bir noktada kesişirler.Kenarortayların kesişim noktasına ağırlık merkezi denir.

ABC üçgeninde [AD], [BE] ve [CF] kenarortaylarınınkesiştikleri G noktasına ABC üçgeninin ağırlık merkezi

 

denir.

a. Ağırlık merkezi kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde böler.

ABC üçgeninde D, E, F noktaları bulundukları kenarlarınorta noktaları ve G ağırlık merkezi ise

 

eşitlikleri vardır.
b. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir.
c. ABC üçgeninde [AD] kenarortay ve|AG| = 2|GD| olduğundan G noktası

 

ağırlık merkezidir.

d. ABC üçgeninde [AD] kenarortay ve |CG| = 2|FG|olduğundan G noktası ağırlık merkezidir.
e. ABC üçgeninde|AG| = 2|GD| ve |CG| = 2|GF|

 

eşitliğini sağlayan G noktası ABC

üçgeninin ağırlık merkezidir.

2. Dik üçgende hipotenüse ait kenarortay hipotenüsün yarısına eşittir.

ABC dik üçgeninde [BD] hipotenüse ait kenarortay

 

|AG|=|DC|=|BD|

3. Kenarortayların Böldüğü Alanlar

a.Kenarortaylar üçgenin alanını altı eşit parçaya bölerler.
b.G ağırlık merkezi köşelere birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.
c. G ağırlık merkezi kenarların orta noktaları ile birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.
4.ABC üçgeninde kenarortaylar ve [FE] çizilirse|AK| = 3x

 

|KG| = x

|GD| = 2x eşitlikleri bulunur.

K noktası [AD] kenarortayının orta noktasıdır.

[FE] //[BC]
2[FE]=[BC]
a. ABC üçgeninde kenarortaylar ve [FE] çizildiğindeşekildeki gibi bir alan bölünmesi oluşur.
b.Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.

5. Kenarortay Uzunluğu

ABC üçgeninde A köşesinden çizilenkenarortayın uzunluğuna Va dersek

 

Bu bağıntı diğer kenarortaylar içinde geçerlidir.

Kenarortaylar taraf tarafa toplanırsa

Kenarortaylar taraf tarafa toplanırsa

6. Dik Üçgende Kenarortaylar

A açısı 90° olan bir dik üçgende kenarortaylar arasında

 

Sponsorlu Bağlantılar