YGS-LYS, Konu Anlatımı

İşlem

İŞLEM:


Herhangi bir A kümesinden A kümesine tanımlanan her fonksiyona birli işlem denir.

A Ì B olmak üzere, A ´ A kümesinden B kümesine tanımlanan her fonksiyona ikili işlem veya kısaca işlem denir.

İşlemler; gibi simgelerle gösterilir.

 

 

B. İŞLEMİN ÖZELİKLERİ
A kümesinde p ve « işlemleri tanımlanmış olsun. Buna göre, aşağıdaki 7 özeliği inceleyelim.

 

 

1. Kapalılık Özeliği
" (Her) a, b Î A için a p b nin sonucu A kümesinin bir elemanı ise, A kümesi p işlemine göre kapalıdır.

 

 

2. Değişme Özeliği
" (Her) a, b Î A için, a p b = b p a ise, p işleminin değişme özeliği vardır.

 

 

3. Birleşme Özeliği
" (Her) a, b, c Î A için a p (b p c) = (a p b) p c ise, p işleminin birleşme özeliği vardır.

 

 

4. Birim (Etkisiz) Eleman Özeliği

" (Her) x Î A için, x p e = e p x = x ise, e ye p işleminin etkisiz elemanı denir.

e Î A ise, p işlemine göre A kümesi birim eleman özeliğine sahiptir.

 

5. Ters Eleman Özeliği
işleminin etkisiz elemanı e olsun.

p

a Î A için, a p b = b p a = e olacak biçimde bir b varsa b elemanına p işlemine göre a nın tersi denir.

a nın tersi b ise genellikle b = a–1 biçiminde gösterilir.

A kümesinin bütün elemanlarının p işlemine göre, tersleri A nın elemanı ise, p işlemine göre A kümesi ters eleman özeliğine sahiptir.

 •  Birim elemanın tersi kendisine eşittir.

 •  Tersi kendisine eşit olan her eleman birim eleman olmayabilir.

 

 

6. Dağılma Özeliği

" a, b, c Î A için,

a « (b p c) = (a « b) p (a « c) ise,

« işleminin p işlemi üzerine soldan dağılma özeliği vardır.

(a p b) « c = (a « c) p (b « c) ise,

« işleminin p işlemi üzerine sağdan dağılma özeliği vardır.

« işleminin p işlemi üzerine; hem soldan, hem de sağdan dağılma özelliği varsa « işleminin p işlemi üzerine dağılma özelliği vardır.

 

 

7. Yutan Eleman Özeliği
" x Î A için, x p y = y p x = y olacak biçimde bir y varsa y ye p işleminin yutan elemanı denir.

 

y Î A ise, p işlemine göre A kümesi yutan eleman özeliğine sahiptir.

Yutan elemanın tersi yoktur. Fakat tersi olmayan her eleman yutan eleman değildir.

 

 

C. TABLO İLE TANIMLANMIŞ İŞLEMLER

     

A = {a, b, c, d} kümesinde işlemi yukarıdaki tablo ile tanımlanmış olsun.

Ü

b c nin sonucu bulunurken, başlangıç sütununda b, başlangıç satırında c bulunur. Bunların kesiştiği bölgedeki eleman, b c nin sonucudur. Buna göre, b c = a dır.

Ü

Başlangıç satırındaki ve başlangıç sütunundaki elemanların sonuçlarının görüldüğü kısımda A kümesine ait olmayan eleman yoksa A kümesi işlemine göre kapalıdır.

Ü

Sonuçlar kısmı, köşegene göre simetrik ise, işleminin değişme özeliği vardır.

Ü

Tablonun sonuçlar kısmında, başlangıç sütununun ve başlangıç satırının görüldüğü sütunun ve satırın kesişimindeki eleman etkisiz elemandır. Yukarıda tablo ile tanımlanan işleminin etkisiz elemanı d dir.

Ü

Yutan eleman hangi elemanla işleme girerse girsin, sonuç kendisine eşit olur. Bunun için, tablonun sonuçlar kısmında aynı elemandan oluşan satır ve sütun belirlenir. Bulunan yutan elemandır.

 

Yandaki tablo, A = {1, 2, 3} kümesinde tanımlanan işlemine göre düzenlenmiştir.

Buna göre,

 işleminin yutan elemanı 1 dir.

 işleminin birim (etkisiz) elemanı 2 dir.

 

 

 

D. MATEMATİK SİSTEMLER
A, boş olmayan bir küme olmak üzere, « işlemi A da tanımlı olsun.
(A, «) ikilisine matematik sistem denir.

1. Tanım

 

 

2. Grup
A ¹ Æ olmak üzere, A kümesinde tanımlı « işlemi aşağıdaki dört koşulu sağlıyorsa, A kümesi « işlemine göre bir gruptur.

 

  1. A, « işlemine göre kapalıdır.

  2. A üzerinde « işleminin birleşme özelliği vardır.

  3. A üzerinde « işleminin birim (etkisiz) elemanı vardır.

  4. A üzerinde « işlemine göre her elemanın tersi vardır.

A üzerinde tanımlı « işleminin değişme özelliği de varsa (A, «) sistemi değişmeli gruptur.

 

3. Halka

 

  1. (A, D) sistemi değişmeli gruptur.

  2. A kümesi « işlemine göre kapalıdır.

  3. « işleminin D işlemi üzerinde dağılma özelliği vardır.

Ü

« işleminin değişme özelliği de varsa (A, D, «) sistemi değişmeli halkadır.

Ü

« işleminin A kümesinde birim (etkisiz) elemanı da varsa (A, D, «) sistemine birim halka denir

A ¹ Æ olmak üzere, A kümesi üzerinde tanımlı D ve « işlemleri aşağıdaki üç koşulu sağlıyorsa (A, D, «) sistemi bir halkadır.

 

 

Sponsorlu Bağlantılar